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Analysis of microhardness data in Tlxlnl_xSe 
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Microhardness measurements have been performed on TlxlnvxSe semiconductors 
( x =  0.0,0.2,0.3 ... 1.0). The microhardness, H, as a function of xshows  a maximum at 
xca. 0.5. A statistical evaluation of the obtained results leads to a log-normal distribution of 
the microhardness rather than, as expected, a polynomial one. 

1. Introduction 
TlInSe2 and some related compounds are ternary 
semiconductors with very unusual electrical proper- 
ties. In some recent publications [1-4]  their S-type 
current-voltage characteristic and the chaotic voltage 
oscillations appearing in the corresponding NDR- 
region are examined. In another report the influence 
of the stoichiometry is examined [5], i.e. how changes 
of x in the system Tl=In~_=Se affect the non-linear 
electrical properties. However, the mechanical proper- 
ties of the TlxInl _=Se compounds had not been exam- 
ined in a systematic way. The aim of the present work 
is to report some data concerning the dependence of 
microhardness on x. 

2. Experimental procedure 
The samples used for the microhardness measure- 
ments were TlxInl_=Se (with x = 0, 0.2, 0.3 ... 1.0). 
These compositions form the InSe-T1Se quasi-binary 
cross-section of the concentration triangle of the ter- 
nary system In-T1-Se (Fig. 1). The crystals were pre- 
pared by crystallization from stoichiometric melts in 
evacuated ampoules. 

Being too small (a few cubic millimetres) and of 
irregular shape, the samples were encapsulated in den- 
tal resin (Kallocryl CP-rz), enabling easy handling. 
After hardening, which took 24 h, the capsules were 
mechanically polished with 5 mm alumina powder 
until flat surfaces of the samples were obtained. 
Microscopic observation revealed that these surfaces 
consisted of lapped and cleaved areas. Indentations 
were made on both areas. 

Microhardness measurements were carried out at 
room temperature with PMT-3 microhardness tester 
[6]. The Vickers diamond indentor (a square-based 
pyramid) was maintained in contact with the sample's 
surface for 60 s. This was an unusually long time, but 
preliminary measurements showed that shorter con- 
tact times gave unstable indentations. The indentor 
was loaded with 10 g. The indentation marks produ- 
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ced were of irregular contours; cracks could be seen 
around the indentations due to material brittleness. 

The microhardness of the TlxIn1_xSe samples as 
a function of x is presented in Fig. 2. In order to 
reduce experimental uncertainty, at least five, and 
typically 10, indentations on a given sample were 
produced. It can be seen that the dependence was 
characterized by a maximum at x = 0.3-0.5. T1Se is 
harder than InSe, a fact consistent with its broader 
gap. The relatively large scattering of experimental 
data is presumably due to: (1) the samples not being 
monocrystalline; and (2) the indentations having ir- 
regular contours. It can be seen that the scattering of 
the data is smaller in the case of the binary com- 
pounds. 

According to the Kurnakov rules for the variation 
of hardness with composition in metal solid solutions 
[7]: 

1. The formation of solid solutions is accompanied 
by an increase in hardness. 

2. The variation of hardness over a continuous 
compositional range of solid solutions yields a con- 
tinuous curve possessing a maximum. 
Later, Goryunova et al. [6] showed that these rules 
were also valid for semiconductor solid solutions. 
Hence, our results represent another verification of 
Kurnakov rules. Goryunova et  al. assumed that their 
behaviour might be due to "healing of defects" which 
took place in certain alloy compositions. But the fol- 
lowing consideration may also be taken into account: 
production of an indentation is accompanied by ma- 
terial transfer to the adjacent parts of the crystal. This 
transfer is facilitated by the presence of defects, e.g. 
dislocations - the bigger the dislocation density, the 
softer the material. On the other hand, it is known that 
the dislocation density in some materials can be re- 
duced by doping, as in the case of GaAs and InP 
doped with Zn, S, Te, A1 or N [8, 91. Several explana- 
tions have been proposed to aid understanding this 
experimental fact. One of them (the so-called "pinning 
effect") is based on the assumption that dislocations 
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Figure I The In-T1-Se concentration triangle with the InSe T1Se 
quasibinary cross-section. 
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Figure 2 Microhardness, H, of the TlxInl xSe samples versus x. 
The best fit using Equation 1 is shown by the curve in the middle 
and the 95% confidence limits are shown as the upper and lower 
curves, respectively. 

are "stopped" by the impurity atoms, due to the stron- 
ger bonds the latter are forming. We suppose that the 
formation of mixed crystals may be accompanied by 
such a decrease in dislocation density. 

3. Analysis and discussion 
One of the main reasons for the large statistical devi- 
ations in microhardness measurements on semicon- 
ductor compounds and their solid solutions is related 
to the lack of precise measuring methods due to their 
high brittleness in comparison with metals and alloys. 

The study of a great number of solid solutions [6, 7] 
has shown that the microhardness dependence on 
composition in quasi-binary systems AxB1-xC can be 
expressed by the following empirical equation, which 
holds also for many other physical quantities (like the 
bandgap, lattice parameter, etc.) 

H ( x )  = HAX + H~(1 -- x) + K x ( 1  - x) (1) 

where HA and HB are the values of the microhardness 
of the pure constituents of the solid solution, x, 1 - x 

are their corresponding concentrations in mole frac- 
tions and K a constant. To explain such variations of 
the properties of a mixed crystal, one has to recall the 
fact that the mole fraction, x, is a random variable 
bound to the limits x = 0 and x = 1 [10]. Composi- 
tion fluctuations in a mixed crystal can be described 
by the deviation Ax of the fractional concentration of 
the A-type atoms which has an average value of x. If 
we choose a volume R 3 with linear size R, the average 
number of A-type atoms is HA = N A R  a, and the total 
number of lattice sites is N N  = N R  3. The local devi- 
ation Ax in the concentration of the A-atoms (the 
fluctuation in composition) is given by 

A x  = A N A / N R  3 = ( x N R 3 ) I / 2 / N R  3 (2) 

The most simple assumption is that A- and B-type 
atoms in the solid solution are distributed in a com- 
pletely random way. Then the random function Ax(r) 
= [ H A ( r ) -  N A l / H  which measures the local devi- 

ation in the concentration of A-type atoms in a small, 
but macroscopic, volume around point r will be 
a Gaussian random function of mean average equal to 
zero and with a pair correlation function 

( A x ( r ) A x ( r ' ) )  = N - i x ( 1  - x)8(r - r') (3) 

where brackets denote averaging over the volume of 
the system, N is the concentration of all A- and B-type 
atoms and 8(r) is Dirac's delta function [10]. Now, for 
small fluctuations, one can expand the dependence 

H Ix (r)] = H (x) + [ d H / d x ] x  I x  (r) - x~ (4) 

The second term has a Gaussian distribution with 
a mean average value equal to zero and a root mean 
square fluctuation equal to 

= I d H / d x l  [x  (1 - x ) / N ]  1/2 (5) 

Already in this simple model one can describe semi- 
empirically the bandgap bowing, proportional to 
x(1 - x) (see, for example, [11]). Thus, we have tried 
to explain the variation of our experimental data as 
a function of x assuming that the microhardness and 
its standard deviation are given by Equations 1 and 5, 
respectively. 

The fitting of our data by means of Equation 1 is 
shown in Fig. 2 (middle curve - the upper and lower 
curves being the 95% confidence limits). The max- 
imum in the dependence is at x = 0.53, consistent with 
the assumed x(1 - x) variation. The parameters of the 
curve H(x)  = a + bx  + cx  2 are listed in Table I, to- 
gether with their standard error, t-value and 95% 
confidential limits, as well as other parameters evalu- 
ating statistical reliability of the model curve. 

In contrast, the data on the standard deviation as 
a function of x shown in Fig. 3 cannot be explained 
assuming a dependence of the type of Equation 5. In 
fact, the experimental data show a maximum, whereas 
the prediction by means of Equation 5 has a minimum 
at compositions 0.4-0.5. We have found that using the 
log-normal distribution a much better fit can be ob- 
tained for both the microhardness and its standard 
deviation 

f ( x )  = a + b e x p { -  0 .5[ ln (x /c ) /d]  2 } (6) 
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T A B L E  I Numeric summary  for the best fit of H ( x )  by means  of a quadratic dependence (Equation 1) as shown in Figs 2 and 5 

Rank 125 Eqn 1003 y = a + bx + cx  2 

r 2 Coef det D F  a ~  r 2 Fit std err F-value 
0.3631692648 0.3406928859 0.6322438023 24.521866681 

Parm Value Std error t-value 95%conf idence  limits 
a 0.608008952 0.210676751 2.885980291 0.189216144 
b 5.614307952 0.840007103 6.683643424 3.944503710 
c -5 .31725739 0.759529095 -7 .00072903 -6 .82708379 

Area X ~ , - X m a x  area precision 
1.6427437989 1.979984e-19 
Funct ion min X-value 
0.6080089525 1.66924e-10 
1st Deriv min X-value 
- 5.020206820 1.0000000000 

2nd Deriv min X-value 
- 10.63451483 0.2619504842 

Soln vector Covar matrix 
Direct LUDecomp 
r 2 Coef det DF  adj r z 

0.3631692648 0.3406928859 
Source Sum of squares 
Regr 19.604361 
Error 34.376971 
Total 53.981332 

X variable: X 
Xmi n : 0.0000000000 
X . . . .  : 0.5820224719 
X@ Ymin : 0.0000000000 

Y var iable :microhardness(GPa)  
Ymln: 0.2930000000 
Y . . . . .  : 1.6221011236 
Y@Xm~,: 0.2930000000 

Xma x 

Xst d : 
X@Ymax: 

Ymax 

Ysta: 
Y@Xmax: 

Funct ion max X-value 
2.0899972912 0.5279326864 
l s t D e r i v m a x  X-value 
5.6143079501 1.669243e-10 
2nd D e r i v m a x  X-value 
-10.63451464 0.5631963212 

Fit std err 
0.6322438023 
D F  Mean square 
2 9.8021803 
86 0.39973223 
88 

F 
24.5219 

1,0000000000 Xr,ng~: 1.0000000000 
0.2933202554 Xmedian: 0.6000000000 
0,5000000000 X@Yrange: 0.5000000000 

3.7200000000 Yra,g~: 3.4270000000 
0.7832140373 Y=odian: 1.5190000000 
1.3630000000 Y@Xrange: 1.0700000000 

1.026801759 
7.284112194 
-3 .80743098 
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Figure3  Experimental dependence of the standard deviation of 
H as a function of composition. The best fit is given by log-normal 
distribution (Equation 6) with 95% confidence limits shown by the 
upper and lower curves, respectively. 

The corresponding parameters are given in Tables II 
and III, respectively, and the corresponding curves are 
shown in Fig. 3 for the standard deviation and in 
Fig. 4 for H(x), together with their confidence limits. 
Finally, in Fig. 5 the predicted dependences according 
to Equations 1 and 6 for the microhardness are com- 
pared. The calculated values of four most frequently 
used statistical criteria obtained from the fit of micro- 
hardness data by means of Equations 1 and 6 are 
given in the first rows of Tables I and II respectively. 
The comparison shows that the log-normal distribu- 
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tion describes the experimental dependence H(x) in 
a much better way according to all four criteria. In 
case of the standard deviation, the log-normal distri- 
bution is the best physically plausible fitting compared 
to a variety of about 320 different functional forms 
which have been tried. 

One possible explanation of these results may be 
related to the fact that the monocrystalline materials 
of this family possess highly anisotropic mechanical 
and other properties in the direction of the c-axis and 
in a plane perpendicular to it. In fact, our specimens 
are polycrystalline with crystallites randomly oriented 
to the plane of the indentation. In addition, the envi- 
ronment where successive indentations have been pro- 
duced is quite different due to different contents of 
impurities, defects, dislocations, etc. In our case, the 
random results of the experiment are expressed by 
means of the area of the indentation which is affected 
by many different and independent causes. If the ef- 
fects of them were additive, the asymptotic distribu- 
tion according to the Central Limit Theorem would 
be the Gaussian one and equations analogous to 
Equations 1 and 5 would be valid for the hardness and 
its standard deviation.'However, the assumption that 
the interaction between different causes is expressed 
by simple addition is not always plausible. A much 
more natural assumption is that every cause produces 
some pulse, the result of which is proportional to the 
strength of the pulse itself. Let us suppose that we 
have n pulses, R1, Ra, . . . ,  R,, which are independent 



T A B L E  II Numeric sunmaary for the best fit of the standard deviation of microhardness by means of log-normal distribution, as shown in Fig. 3 

Rank 1 Eqn 8005 y = a + b exp { - 0.5 [In (x/c)/d] z } (log-normal) 

r e Coef det D F  a ~  r 2 Fit std err F-value 
0.7349451771 0.5229013188 0.1522455281 5.5456087842 

Parm Value Std error r-value 95%conf idence  limits 
a 0.055443217 0.148554950 0.373216892 -0 .30957134 
b 0.644373725 0.167704662 3:842312539 0.232306382 
c 0.376769410 0.044404413 8.484954251 0.267663270 
d 0.594999379 0.173369504 3.431972550 0.169012945 

Area Xmln-X .... area precision 
0.4237358415 
Funct ion min 
0.0554432166 
1st Deriv rain 
- 1.041522173 

2nd Deriv min 
- 21.80618559 

r 2 Coef det 
0.7349451771 
Source 
Regr 
Error 
Total 

X variable: X 
Xmi n : 0.0000000000 
Xmear a : 0.5400000000 
X @  Ymin : 0.0000000000 

Y variable: microhardness (GPa) 
Ymin : 0.0528000000 
Y . . . .  : 0.4262860000 
Y@Xmin: 0.0528000000 

4.258404e-10 
X-value Funct ion max 
0.0010178024 0.6998169418 
X-value l s t D e r i v m a x  
0.5872161156 3.4834031641 
X-value 2 n d D e d v m a x  
0.2644376475 41.737971396 

DF  a d j r  e Fit std err 
0.5229013188 0.1522455281 
Sum ofsquares  D F  
0.38562002 3 
0.1390722 6 
0.52469223 9 

X-value 
0.3767693954 
X-value 
0.1696689692 
X-value 
0.0889373823 

Mean square F 
0.12854001 5.54561 
0.023178701 

X~.x: 1.0000000000 Xrange: 
Xstd: 0.3204163958 Xmedian: 
X@Ymax: 0.3000000000 X@Yrange: 

Y~ax: 0.8420600000 Yrange: 
Ystd: 0.2414521406 Ymedian: 
Y@Xmax: 0.2162000000 Y@Xrange: 

0.420457776 
t.056441068 
0.485875550 
1.020985813 

1.0000000000 
0.5500000000 
0.3000000000 

0.7892600000 
0.3643000000 
0.1634000000 

T A B L E  I I I  Numeric summary  for the best fit of H(x) by means  of log-normal distribution, as shown in Figs 4 and 5 

Rank 9 Eqn 8005 y = a + b exp { -  0.5 [In (x/c)/d] 2} (log-normal) 

r a Coefde t  DF  a ~  r 2 Fit std err F-value 
0.4924053889 0.4682342169 0.5677679028 27.485488840 

Parm Value Std error t-value 95%conf idence l imi t s  
a 0.388310213 0.211996011 1,831686412 -0 .03317448 
b 1.944326059 0.231663235 8.392898673 1.483739527 
c 0.396279869 0.022906725 17.29971737 0.350737342 
d 0.639357395 0.086340097 7.405103985 0.467698367 

Area Xmin-Xmax area precision 
1.5859052865 1.601936e-09 
Funct ion min X-value Funct ion max X-value 
0.3883102130 0.0006147410 2,3326362717 0.3962799668 
1st De r ivmin  X-value 1st D e r i v m a x  X-value 
-2 .691100115 0.6320473221 9.8761445873 0.1650914073 

2 n d D e r i v m i n  X-value 2 n d D e r i v m a x  X-value 
-55.92070746 0.2633109703 118.85652470 0.0808750802 

r 2 Coef det DF  a ~  r z Fit std err 
0.4924053889 0.4682342169 0.5677679028 
Source Sum ofsquares  DF  Mean square F 
Regr 26.580699 3 8.8602329 27.4855 
Error 27.400633 85 0.32236039 
Total 53.981332 88 

X variable: X 
Xmi n : 0.0000000000 Xma x : 1.0000000000 Xrange : 
X . . . .  : 0.5820224719 X~ta: 0.2933202554 Xmedian: 
X@Ymin: 0.0000000000 X@Ymax: 0.5000000000 X@Y~,,ge: 

Y variable: microhardness (GPa) 
Ymin : 0.2930000000 Ymax : 3.7200000000 Yrange : 
Ymean: 1.6221011236 Ystd: 0.7832140373 Ymedian: 
Y@Xmin: 0.2930000000 Y@Xmax: 1.3630000000 Y@Xrangel 

0.809794906 
2.404912590 
0.441822395 
0.811016423 

1.0000000000 
0.6000000000 
0.5000000000 

3.4270000000 
1.5190000000 
1.0700000000 
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Figure 4 The data from Fig. 2 are fitted by means  of log-normal 
distribution (Equation 6) with 95% confidence limits shown by the 
lower and upper curves, respectively. 
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Figure 5 Comparison of the best fits from Figs 2 and 4 using curves 
of Equations 1 and 6. 

random variables and let them affect the random 
variable Xo (with an initial value X) so that after the 
action of R1...  Rv, it successively had the values 
X1 ... Xv, respectively. Furthermore, suppose the in- 
crease in X due to the (v + 1)th pulse is proportional 
to Rv+l and to some function g(X~) of the value of 
X after the vth pulse 

X~+a = Xv+Rv+ag(Xv) (7) 

If every pulse has changed the value of X only slightly, 
then approximately we would have 

" i l X v - l - - X v  fi: dt 
R1 + R 2 +  ..- + R , =  ~ (8) 

o g ( x o  0 

where X = X, is the final value of the variable. Since 
the Rjs are independent, their sum is a Gaussian 
random variable. In the case g(t) = t (the effect of each 
pulse is proportional to the value of X at moment t) 
one finds that log(X) is normally distributed, i.e. 
X obeys the log-normal distribution (Equation 6). 
Using the above mechanism, first proposed by the 
Dutch astronomer Kapteyn, Kolmogorov [12] has 

shown that the size of the crushed ores obeys a log- 
normal distribution. 

4. Conclusions 
In conclusion, it seems unlikely that, as a rule, the 
dependence of microhardness on composition obeys 
Equation 1, which is intuitively the most natural em- 
pirical law in solid solutions. We have found that in 
the system TlxInl -xSe, H(x) is better described by the 
log-normal distribution, Equation 6, with a maximum 
at x ca. 0.5. Results obtained on similar systems, e.g. 
(T1GaTez)x-(T1GaSa)I _~ and (T1GaSez)x-(TIInS2)I _~, 
also show a pronounced maximum at x ca. 0.5 [13] in 
accordance with Kurnakov's rules. Concerning the 
member with x = 0.5, i.e. TlInSe2, measurements of 
the Knoop hardness, HK (reported in [14]), gave 
values for HK in the range 0.7-0.74 GPa, not very 
different from those reported in the present work. 
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